a, tự tính
b, tcm
c, dùng định lí trong SGK
a, tự tính
b, tcm
c, dùng định lí trong SGK
Bài 1:Cho tam giác nhọn ABC Kẻ AH vuông góc với BC(H thuộc BC), AB=13 cm. AH=12 cm. HC=16 cm. Tính độ dài đoạn thẳng AC,BC
Bài 2: Cho tam giác ABC vuông tại A. Một đường thẳng cắt cạnh AB,AC ở D và E.Chứng minh CD2-CB2=ED2-EB2
Bài 3: Cho tam giác ABC vuông tại A có AB:AC=8:15 và BC=51 cm
a/ Tính độ dài AB,AC
b/ Tính diện tích tam giác ABC
4/Cho tam giác ABC cân tại A vẽ BC,CE lần lượt vuông góc với AC và AB. Gọi I là giao điểm của BD và CE
a/ Chứng minh rằng tam giác AEI=tam giác ADI
b/ Gọi M là trung điểm BC. Chứng minh 3 điểm A,I,M thẳng hàng.
AI KO LÀM THÌ ĐỪNG CMT DÙM CÁI!
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC
b, Cho BH = 8cm, AB = 10cm. Tính AH
c, Gọi E là trung điểm của AC và G là giao điểm của BE và AH. Tính HG
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng
Cho tam giác ABC có góc ABC > góc ACB. Kẻ AH vuông góc với BC và gọi M là 1 điểm trên AH. Trên tia đối của HM lấy D sao cho HM=HD.
a) Chứng minh: tam giác BMD cân
b) Chứng minh: góc BMC=góc BDC.
c) Biết AH=24cm, AC=26cm, CD=12,5cm. Tính diện tích tam giác HMC.
Cho tam giác ABC có 3 góc nhọn, đường cao AH. Dựng D là điểm sao cho AB là trung trực của HD, dựng E là điểm sao cho AC là đường trung trực của HE. Nối D với E cắt AB tại I và cắt AC tại K. Chứng minh rằng HA là phân giác của góc HIK
BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh: Tam giác ABM = tam giác ACM.
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.
Chứng minh: BH = CK.
c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.
Chứng minh: Tam giác IBM cân.
BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.
a) Tính độ dài cạnh AC.
b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.
Chứng minh: DC = DF.
c) Chứng minh: AE song song FC. ( AE // FC )
BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: Tam giác ABD = tam giác ACE.
b) Chứng minh: Tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.
Chứng minh: ECB^ = DKC^.
#helpme
#mainopbai
Cho tam giác ABC cân tại A. Gọi H là trung điểm BC
a) Chứng minh \(\Delta AHB=\Delta AHC\)
b)Qua H kẻ đường thẳng song song với AB cắt AC tại K. Chứng minh \(\widehat{KAH}=\widehat{KHA}\)và tam giac KHC cân tại C
c)BK cắt AH tại G. Cho AB=10cm và AH=6cm. Tính độ dài AG và HK
d)C/m: 2.(AH+BK) > 3AC
BÀi 1
Cho tam giác ABC cân ở A có AB=AC=5 cm; kẻ AH vuông góc BC(H thuộc BC)
a, Chứng minh: BH=HC và BAH=CAH
b, Kẻ HD vuông góc AB(D thuộc AB), kẻ EH vuông góc AC(E thuộc AC)
c, Tam giác ADE là tam giác gì?Vì Sao?
Bài 2
Cho tam giác ABC vuông tại A(AB<AC), BD là đường phân giác. Vẽ DE vuông góc BC tại E
a, Cứng minh tam giác DAE cân
b, Chứng minh DA<DC
c,Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB,DE,CF đồng quy
giúp minh với nha!!!!!!!!!!!!!!!!!!!!!
Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm
a)Tính AH
b)CM: Tam giác ABH=tam giác ACH
c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân
d)CM:AH là trung trực của DE
Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H
a)Tam giác ADB=tam giác ACE
b)Tam giác AHC cân
c)ED song song BC
d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông
Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:
a)tam giác ABD=tam giác EBD
b)Tam giác ABE là tam giác cân
c)DF=DC
Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm
a) Tính BC
b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC
c)CM: DE đi qua trung điểm cạnh BC
Cho tam giác ABC cân tại A. Kẻ BD vuông góc AC (D thuộc AC ), CE vuông góc AB ( E thuộc AB ). BD và CE cắt nhau tại H
a) Chứng minh tam giác BEC và tam giác CDB
b) Chứng minh tam giác BHC là tam giác cân
c) Gọi M là giao điểm của AH và BC. Chứng minh AM là đường trung trực của BC
P/s câu a và b với vẽ hình mình đã biết làm rồi còn câu c mình bí.