\(c=\sqrt{a^2+b^2-2ab\cos C}=\sqrt{8^2+6^2-2\cdot8\cdot6\cdot\cos60}=2\sqrt{13}\)
\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\Leftrightarrow\frac{8}{\sin A}=\frac{6}{\sin B}=\frac{2\sqrt{13}}{\sin60}\)
\(\Rightarrow\left\{{}\begin{matrix}\sin A=\frac{2\sqrt{39}}{13}\\\sin B=\frac{3\sqrt{39}}{26}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}A\approx73,9\\B\approx46,1\end{matrix}\right.\)