Cho tam giác ABC, AQ, KB, CI là 3 đường cao, H là trực tâm.
a) C/m: A,B,Q,K thuộc một đường tròn. Xác định tâm của đường tròn
b) C/m: A,I,H,K thuộc một đường tròn. Xác định tâm của đường tròn
cho đường tròn (O;R) và dây cung BC cố định (BC<2R) . Gọi A là điểm di động trên cung lớn BC sao cho ABC là tam giác có 3 góc nhọn. Các đường cao AD,BE,CF của tam giác cắt nhau tại H . a) CM:tứ giác AEHF nội tiếp đường tròn; xác định tâm I của đường tròn đó.b)CMR:khi điểm A di động thì tiếp tuyến tại E của đường tròn tâm (I) luôn đi qua 1 điểm cố định.c)Xác định vị trí của điểm A để tam giác AEF có diện tích lớn nhất ?
Cho tam giác ABC có 3 góc ngọn. Hai đường cao của tam giác ABC là AD,BE cắt nhau tại H (D thuộc BC; E thuộc AC).
a) Chứng minh: CDHE là tứ giác nội tiếp một đường tròn.
b) Chứng minh: HA.HD = HB.HE.
c) Gọi điểm I là tâm đường tròn ngoại tiếp tứ giác CDHE. Chứng minh IE là tiếp tuyến của đường tròn đường kính AB.
( Làm mỗi câu c hộ mình thoi ạ)
Cho đường tròn tâm O đường kính AB, lấy điểm C thuộc đường tròn tâm O, với điểm C không trùng A và B. Gọi I là trung điểm của dây AC, D là giao điểm của tia OI và tiếp tuyến của đường tròn tâm O tại A.
a) Chứng minh tam giác ABC vuông.
b) Chứng minh DC là tiếp tuyến của đường tròn tâm O. Chứng minh DC2=DI.DO
c) Tia phân giác của góc BAC cắt dây BC tại điểm E và cắt đường tròn tâm O tại F, với F không trùng với A. Chứng minh rằng FA.FE=FB2
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O kẻ đường thẳng (d) tiếp tuyến với đường tròn tâm O(với C là tiếp điểm ) AH, BK là đường cao của tam giác ABC a) Chứng minh tứ giác AKHB nội tiếp b) Chứng minh KHvuông góc với OC2)từ A,H,B,K lần lượt kẻ các đường thẳng song song với OC cắt đường thẳng (d) theo thứ tự là M,N,E,F:a)chứng minh góc CAH = góc CEK b) chưng minh EF=MN
Cho tam giác ABC nhọn (AB<AC), có các đường cao BN và CM cắt nhau tại H. Gọi O là trung điểm của BC. Chứng minh rằng :
a) Bốn điểm B,M,N,C thuộc cùng một đường tròn .
b)MN//BC
c)ON là tiếp tuyến của đường tròn có đường kính AH
cho đường tròn (O;R) , dây BC\(\ne\)đường kính . 2 tiếp tuyến của đg tròn tại B và C cắt nhau tại A. Kẻ đường kính CD . Kẻ BH vuông góc CD tại H
a, CM: A,B,O,C cùng thuộc 1 đường tròn . Xác định tâm,bán kính đường tròn đó
b, CM : AO vuông góc BC . Tính AB,OA biết R=1,5 và BC=24
c, CM: BC là phân giác góc ABH
d, I là giao điểm AD và BH , BD giao AC tại E . CM : IH=IB