Violympic toán 9

JN

\(\sqrt{x^2-x+1}+\sqrt{x^2-9x+9}=2x\)

giải pt

NL
17 tháng 5 2019 lúc 23:09

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a\\\sqrt{x^2-9x+9}=b\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}a+b=2x\\9a^2-b^2=8x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=2x-a\\9a^2-b^2=8x^2\end{matrix}\right.\)

\(\Leftrightarrow9a^2-\left(2x-a\right)^2-8x^2=0\)

\(\Leftrightarrow2a^2+ax-3x^2=0\Leftrightarrow\left(a-x\right)\left(2a+3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-3x\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=x\left(x\ge0\right)\\2\sqrt{x^2-x+1}=-3x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=x^2\\-5x^2-4x+4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{-2-2\sqrt{6}}{5}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
VH
Xem chi tiết
BB
Xem chi tiết
BL
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết
KR
Xem chi tiết
H24
Xem chi tiết
BL
Xem chi tiết