HT

\(\sqrt{x^2-2x+4}+\sqrt{x^2+5}=9-2x\)

Làm giúp mik bài này với ạ mik cảm mơn

LL
12 tháng 10 2021 lúc 9:46

\(\sqrt{x^2-2x+4}+\sqrt{x^2+5}=9-2x\left(đk:x\le\dfrac{9}{2}\right)\)

\(\Leftrightarrow x^2-2x+4+x^2+5+2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=81-36x+4x^2\)

\(\Leftrightarrow2\sqrt{\left(x^2-2x+4\right)\left(x^2+5\right)}=2x^2-34x+72\)

\(\Leftrightarrow4\left(x^2-2x+4\right)\left(x^2+5\right)=4x^4+1156x^2+5184-136x^3+288x^2-4896x\)

\(\Leftrightarrow4x^4-8x^3+36x^2-40x+80=4x^4-136x^3+1444x^2-4896x+5184\)

\(\Leftrightarrow128x^3-1408x^2+4856x-5104=0\)

\(\Leftrightarrow128x^2\left(x-2\right)-1152x\left(x-2\right)+2552\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(128x^2-1152x+2552\right)=0\)

\(\Leftrightarrow x=2\left(tm\right)\)(do \(128x^2-1152x+2552>0\))

Bình luận (1)

Các câu hỏi tương tự
PK
Xem chi tiết
PK
Xem chi tiết
PK
Xem chi tiết
CM
Xem chi tiết
HT
Xem chi tiết
BT
Xem chi tiết
VN
Xem chi tiết
HH
Xem chi tiết
AC
Xem chi tiết