Giải phương trình: \(\frac{\left(x^6+3x^4\sqrt{x^2-x+1}\right)\left(3+x-x^2\right)}{4\left(2+\sqrt{x^2-x+1}\right)\left(x^2-x+1\right)}=\sqrt{x^2-x+1}\left(2-\sqrt{x^2-x+1}\right)\)
Giải phương trình: \(\frac{\left(x^6+3x^4\sqrt{x^2-x+1}\right)\left(3+x-x^2\right)}{4\left(2+\sqrt{x^2-x+1}\right)\left(x^2-x+1\right)}=\sqrt{x^2-x+1}\left(2-\sqrt{x^2-x+1}\right)\)
rút gọn biểu thức
\(A=\left[\frac{2\left(x-2\sqrt{x}+1\right)}{x-4}-\frac{2\sqrt{x}-1}{\sqrt{x}+2}\right]:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(\sqrt{x-1+2\sqrt{x-2}}-\sqrt{x-1-2\sqrt{x-2}=}1\)( ĐK : \(x\ge2\))
\(\Leftrightarrow\sqrt{x-2+2\sqrt{x-2}+1}+\sqrt{x-2-2\sqrt{x-2}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-2}+1\right)^2}-\sqrt{\left(\sqrt{x-2}-1\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-2}+1\right|-\left|\sqrt{x-2}-1\right|=1\)
\(\Leftrightarrow\sqrt{x-2}=\left|\sqrt{x-2}-1\right|\)
\(\Leftrightarrow x-2=x-2-2\sqrt{x-2}+1\)
\(\Leftrightarrow\sqrt{x-2}=\frac{1}{2}\)
\(\Leftrightarrow x-2=\frac{1}{4}\)\(\Leftrightarrow x=\frac{9}{4}\)(TĐK)
Rút gọn:
\(A=\left(\frac{4x\sqrt{x}+3x+9}{x+5\sqrt{x}+6}-\frac{3-\sqrt{x}}{2+\sqrt{x}}\right)\div\left(\frac{\sqrt{x}}{3+\sqrt{x}}-\frac{3+4\sqrt{x}}{x+5\sqrt{x}+6}\right)\)
\(B=\left(x-\sqrt{x}-2\right)\left(\dfrac{3}{\sqrt{x}-2}-\dfrac{4-\sqrt{x}}{x-2\sqrt{x}}\right)\)
Rút gọn:
\(A=1-\left[\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}+\dfrac{2x-1+\sqrt{x}}{1-x}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
\(B=\left[1:\frac{2x-1}{x-x^2}\right]\cdot\left[\frac{2x^3+x^2-x}{x^3-1}-2-\frac{1}{x-1}\right]\)
\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)ĐK:x\ge0.\)
Giúp mk bài này vs làm ko ra
Rút gọn:
\(C=\left(\dfrac{1}{x+1}-\dfrac{x+3\sqrt{x}-4}{\left(x^2-1\right)\left(\sqrt{x}+4\right)}\right):\dfrac{\sqrt{x}+1}{x^2\sqrt{x}+x^2-\sqrt{x}-1}\)
\(x+y=4\Rightarrow\frac{x+y}{2}=2\Rightarrow\sqrt{\frac{x+y}{2}}=\sqrt{2}\)
\(P.\sqrt{\frac{x+y}{2}}=\sqrt{2}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{2}\sqrt{x^2+\frac{1}{x^2}}\)
\(\Leftrightarrow\sqrt{2}P=\sqrt{1+1}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{1+1}\sqrt{x^2+\frac{1}{x^2}}\)
\(\Leftrightarrow\sqrt{2}P\ge x+\frac{1}{x}+y+\frac{1}{y}\)
\(x+\frac{1}{x}=\left(\frac{1}{x}+4x\right)-3x\ge4-3x\)
\(y+\frac{1}{y}=\left(\frac{1}{y}+4y\right)-3y\ge4-3y\)
\(\Rightarrow\sqrt{2}P\ge8-3\left(x+y\right)=8-3.4=-4\)
đến đay sau răng