Ta có \(\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)\(\ge\)\(\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\)\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)\(\ge\)\(a^2+b^2+c^2+d^2\)\(+2\left(ac+bd\right)\)
\(\Leftrightarrow\)\(\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)\(\ge\)\(ac+bd\)
\(\Leftrightarrow\)\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)\(\ge\)\(\left(ac+bd\right)^2\)(*)
Vì (*) luôn đúng theo bđt bunhia copxki \(\Rightarrow\)đpcm
dấu ''='' xảy ra khi a/c=b/d
Đúng 0
Bình luận (0)
Cái này là Mincopxki rồi bạn. `
Mincopxki: \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
Đúng 0
Bình luận (0)