\(=\sqrt{5}-2-2-\sqrt{2}-\sqrt{5}=-2-2\sqrt{2}\)
\(=\sqrt{5}-2-2-\sqrt{2}-\sqrt{5}=-2-2\sqrt{2}\)
Chứng minh các bất phương trình sau vô nghiệm :
a. \(x^2+\sqrt{x+8}\le-3\)
b. \(\sqrt{1+2\left(x-3\right)^2}+\sqrt{5-4x+x^2}< \dfrac{3}{2}\)
c. \(\sqrt{1+x^2}-\sqrt{7+x^2}>1\)
Hãy viết điều kiện của bất phương trình sau rồi suy ra rằng bất phương trình đó vô nghiệm :
\(\dfrac{\sqrt{5-x}}{\sqrt{x-10}\left(\sqrt{x}+2\right)}< \dfrac{4-x^2}{\left(x-4\right)\left(x+5\right)}\)
tìm nghiệm của bất phương trình \(\dfrac{\left|2-x\right|}{\sqrt{5-x}}>\dfrac{x-2}{\sqrt{5-x}}\)
\(5\sqrt{x}+\dfrac{5}{2\sqrt{x}}< 2x+\dfrac{1}{2x}+4\)
Mọi người giúp mình bài này với ạ thankssss :)))
Chứng minh rằng các bất phương trình sau đây vô nghiệm :
a) \(x^2+\dfrac{1}{x^2+1}< 1\)
b) \(\sqrt{x^2-x+1}+\dfrac{1}{\sqrt{x^2-x+1}}< 2\)
c) \(\sqrt{x^2+1}+\sqrt{x^4-x^2+1}< 2\sqrt[4]{x^6+1}\)
Giải các bất phương trình sau
1) \(\dfrac{\text{x - 2}}{x+1}-\dfrac{3}{x+2}>0\) 2) \(\dfrac{\text{x + 1}}{x+2}+\dfrac{x}{x-3}\le0\)
3) \(\dfrac{\text{x}^2+2x+5}{x+4}>x-3\) 4) \(\sqrt{\text{x^2}-3x+2}\ge3\)
\(\sqrt{x+2+}\sqrt{5-x}+\sqrt{3x-x^{ }2+10}=4\)
\(\sqrt{x+2}+\sqrt{5-x}+\sqrt{10-3x-x^2}=4\)
Viết điều kiện của mỗi bất phương trình sau :
a) \(2x-3-\dfrac{1}{x-5}< x^2-x\)
b) \(x^3\le1\)
c) \(\sqrt{x^2-x-2}< \dfrac{1}{2}\)
d) \(\sqrt[3]{x^4+x-1}+x^2-1\ge0\)