Đặt biểu thức trên là A
\(A^3=2a+3A\sqrt[3]{\left(a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}\right)\left(a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}\right)}\)
\(=2a+3A\sqrt[3]{a^2-\left(\dfrac{a+1}{3}\right)^2.\dfrac{8a-1}{3}}\)
\(=2a+3A\sqrt[3]{\dfrac{-8a^3+12a^2-6a+1}{27}}\)
\(=2a+3A\sqrt[3]{\left(\dfrac{1-2a}{3}\right)^3}=2a+A\left(1-2a\right)\)
\(\Leftrightarrow A^3-2a-A+2aA=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+2a\right)=0\)
Dễ thấy \(A^2+A+2a>0\) nên A=1.