Chương I - Căn bậc hai. Căn bậc ba

H24

a)Cho biểu thứcP=\(\dfrac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\dfrac{\sqrt{a}-2}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+2}-1. \)Tìm a để /P/ =1

b)Chứng minh rằng với a>1/8 thì số sau đây là một số nguyên

x=\(\sqrt[3]{a+\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}+\sqrt[3]{a-\dfrac{a+1}{3}\sqrt{\dfrac{8a-1}{3}}}}\)

MP
19 tháng 8 2018 lúc 10:02

a) điều kiện xác định : \(a\ge0;a\ne1\)

ta có : \(P=\dfrac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\dfrac{\sqrt{a}-2}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+2}-1\)

\(\Leftrightarrow P=\dfrac{3a+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}-\dfrac{\sqrt{a}-2}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}+2}\) \(\Leftrightarrow P=\dfrac{3a+3\sqrt{a}-3-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}\) \(\Leftrightarrow P=\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+2\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\)

để \(\left|P\right|=1\Leftrightarrow\left|\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right|=1\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=1\\\dfrac{\sqrt{a}+1}{\sqrt{a}-1}=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-1=0\\\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{\sqrt{a}-1}=0\\\dfrac{2\sqrt{a}}{\sqrt{a}-1}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2=0\left(vôlí\right)\\2\sqrt{a}=0\end{matrix}\right.\Rightarrow a=0\)

vậy \(a=0\)

Bình luận (0)
MP
19 tháng 8 2018 lúc 10:04

câu b đề bị sai rồi . thế \(a=1\) vào là bt

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
MT
Xem chi tiết
DH
Xem chi tiết
NA
Xem chi tiết
VT
Xem chi tiết
PA
Xem chi tiết
LM
Xem chi tiết
MK
Xem chi tiết
LL
Xem chi tiết