Đặt \(A=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\)
\(\Leftrightarrow A^3=14+3\left(-1\right)A\)
\(\Leftrightarrow\left(A^3-2A^2\right)+\left(2A^2-4A\right)+\left(7A-14\right)=0\)
\(\Leftrightarrow\left(A-2\right)\left(A^2+2A+7\right)=0\)
\(\Leftrightarrow A=2\)
\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
\(=\sqrt[3]{1+3\sqrt{2}+6+2\sqrt{2}}-\sqrt[3]{-1+3\sqrt{2}-6+2\sqrt{2}}\)
\(=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}\)
\(=1+\sqrt{2}-\sqrt{2}+1=2\)