\((\sqrt{2003}+\sqrt{2005})^2=4008+2\sqrt{2003}\sqrt{2005}\)
\((2\sqrt{2004})^2=4.2004=2.2004+2.2004=4008+2.\sqrt{2004}\sqrt{2004}\)
Ta có: \(\sqrt{2004}\sqrt{2004}>\sqrt{2003}\sqrt{2005}\)
\(\Rightarrow 4008+2.\sqrt{2004}\sqrt{2004}>4008+2\sqrt{2003}\sqrt{2005}\Rightarrow 2\sqrt{2004}>\sqrt{2003}+\sqrt{2005}\)