GPT: \(\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\sqrt{x-1}\)
Tìm x, biết:
a, \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{4}{3}\sqrt{9x+45}=6\)
b, \(\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\sqrt{x-1}\)
rút gọn
P=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
N= \(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{10\sqrt{x}}{x-25}-\frac{5}{\sqrt{x}+5}\)
\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)
\(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
1. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+3-4\sqrt{x-1}}\left(2< x< 5\right)\)
2. \(\frac{6}{1-\sqrt{3}}-\frac{3\sqrt{3}-1}{\sqrt{3}+1}+\sqrt{3}\)
3. \(\sqrt{29-12\sqrt{5}+\sqrt{24-8\sqrt{3}}}\)
4. \(\sqrt{\frac{4}{9-4\sqrt{5}}}-\sqrt{\frac{4}{9+4\sqrt{5}}}\)
5. \(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{x}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\)
6. \(\frac{6-\sqrt{6}}{\sqrt{6}-1}-9\sqrt{\frac{2}{3}}-\frac{4}{2-\sqrt{6}}\)
7. \(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\frac{\left(\sqrt{x}-1\right)^2}{2}\left(x\ge0,x\ne1\right)\)
TÌM GIÁ TRỊ LỚN NHẤT (có thể dùng BĐT côsi)
\(y=\left|x\right|\sqrt{25-x^2}Với-5\le x\le5\)
\(f\left(x\right)=\frac{x}{2}+\sqrt{1-x-2x^2}\)
\(E=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)
TÍNH
\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+\sqrt{1+\frac{1}{4^2}+\frac{1}{5^2}}+...+\sqrt{1+\frac{1}{2012^2}+\frac{1}{2013^2}}\)
GIÚP EM ĐI Ạ, MAI EM PHẢI KIỂM TRA RỒI
Rút gọn các biểu thức sau:
A = \(4\sqrt{x}-\frac{\left(x+6\sqrt{x}+9\right)}{x-9}\)
B = \(\frac{5\sqrt{x}-\left(x-10\sqrt{x}+25\right).\left(\sqrt{x}+5\right)}{x-25}\)
C = \(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\)
tìm x
\(3\left(x^2-x+1\right)=\left(x+\sqrt{x-1}\right)^2\)
Tính
a)\(\sqrt{6+2\sqrt{8\sqrt{2}}-9}-\sqrt{7-\sqrt{2}}\)
b)\(\frac{15}{3-\sqrt{3}}-\frac{2}{1-\sqrt{3}}+\frac{3}{-2+\sqrt{3}}-\sqrt{9}\)
\(\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
\(\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}+1}\right):\left(1-\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
\(\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}+\frac{1}{2-\sqrt{x}}\)