\(B=x-4\sqrt{x}+\frac{x+16}{\sqrt{x}+3}+10=x-4\sqrt{x}+4+\frac{4\left(\sqrt{x}+3\right)+x-4\sqrt{x}+4}{\sqrt{x}+3}+6\)
\(=\left(\sqrt{x}-2\right)^2+\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}+3}+4+6\ge10\)Dấu = xảy ra tại x=4
giải pt , \(\sqrt{x^4+4x^2}+\sqrt{x+x^2}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}.\)
\(x=0\)
\(x^3=0\)
\(x^3=2.0.\sqrt{0}\)
\(x^3=2x\sqrt{x}\)
\(x^3=2x\sqrt{x}\)
\(4\left(x^3-2x\sqrt{x}\right)^2=0\)
\(4\left(x^6-4x^4\sqrt{x}+4x^2x\right)=0\)
\(4x^6-16x^4\sqrt{x}+16x^2x=0\)
\(4x^6+16x^3=16x^4\sqrt{x}\)
\(16x^4+4x^5+4x^6+16x^3=16x^4+4x^5+16x^4\sqrt{x}\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(4x^4+4x^4\sqrt{x}+x^4.x\right)\)
\(4x^3\left(x+1\right)\left(x^2+4\right)=4\left(2x^2+x^2\sqrt{x}\right)^2\)
\(2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)\)
\(x^4+x^2+4x^2+x+2\sqrt{2x^3\left(x+1\right)\left(x^2+4\right)}=2\left(2x^2+x^2\sqrt{x}\right)+x^4+x^2+4x^2+x\)
\(\left(\sqrt{x^4+4x^2}+\sqrt{x^2+x}\right)^2=\left(x^4+2x^2\sqrt{x}+x\right)+9x^2\)
\(\sqrt{x^4+4x^2}+\sqrt{x^2+x}=\sqrt{\left(x^2+\sqrt{x}\right)^2+9x^2}\)
vậy x=0 là nghiệm của pt =))
b, \(M=A-B=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\left(\frac{5}{x+\sqrt{x}-6}+\frac{1}{\sqrt{x}-2}\right)\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{x+\sqrt{x}-6}-\frac{5}{x+\sqrt{x}-6}-\frac{1\left(\sqrt{x}+3\right)}{x+\sqrt{x}-6}\)
\(=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\frac{x-4\sqrt{x}+3\sqrt{x}-12}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)
\(\Leftrightarrow4^2\ge2\sqrt{xy}+2\sqrt{xy}=4\sqrt{xy}\)
\(\Leftrightarrow4\ge\sqrt{xy}\Leftrightarrow-\sqrt{xy}\ge-4\)
Min=-4 tại x=y=4
CHỨNG MINH RẰNG VỚI MỌI SỐ DƯƠNG N THÌ
GIÚP MÌNH VỚI
1+\(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)
\(\sqrt{x-2}+2\sqrt{4-x}=3\)
so sánh
\(\sqrt{12}+\sqrt{7}và\sqrt{13}+\sqrt{6}\)
XIN LỖI NHÉ TREO MÁY NÊN KHÔNG ĐEẺ Ý ĐỀ ĐÂY
4) \(x^2-5x+4=\left(2x-1\right)\sqrt{x^2-3x+4}\)
5) \(2\sqrt{\left(x+2\right)^3}=6x+3x^2-x^3\)
6) đề là cái link tớ gửi cho cậu
7) \(x=\sqrt{x+2}\left(1-\sqrt{1-\sqrt{x}}\right)^2\)
đến đây sthôi tí gửi tiếp cho giờ học đã
Cho a=1/2sqrt(sqrt(2) 1/8)-sqrt(2)/8.tính F = a^2 sqrt(a^4 a 1)