TH

so sánh

\(\sqrt{2005}+\sqrt{2007}\)   và  \(2\sqrt{2006}\)

cách giải nha

 

HN
18 tháng 9 2016 lúc 16:32

Áp dụng \(\sqrt{\frac{a+b}{2}}>\frac{\sqrt{a}+\sqrt{b}}{2}\) được \(\sqrt{\frac{2007+2005}{2}}>\frac{\sqrt{2005}+\sqrt{2007}}{2}\Rightarrow2\sqrt{2006}>\sqrt{2005}+\sqrt{2007}\)

Bình luận (0)
HB
18 tháng 9 2016 lúc 15:53

\(A=\sqrt{2005}+\sqrt{2007}\Rightarrow A^2=\left(\sqrt{2005}+\sqrt{2007}\right)^2=2005+2007+2\sqrt{2005\cdot2007}=4012+2\sqrt{\left(2006-1\right)\left(2006+1\right)}=4012+2\sqrt{2006^2-1}\)

\(B=2\sqrt{2006}\Rightarrow B^2=\left(2\sqrt{2006}\right)^2=4\cdot2006=2\cdot2006+2\cdot2006=4012+2\sqrt{2006^2}\)

Ta thấy \(4012=4012\) và \(\sqrt{2006^2-1}< \sqrt{2006^2}\)
nên \(A^2< B^2\)\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)
 

Bình luận (0)
PN
18 tháng 9 2016 lúc 16:11

Có \(\sqrt{2005}+\sqrt{2007}=2005+2007+2\sqrt{2005\cdot2007}\)

                                            \(=2005+2007+2\sqrt{\left(2006-1\right)\left(2006+1\right)}\)

                                            \(=4012+2\sqrt{2006^2-1}\)

\(2\sqrt{2006}=2006+2006+2\cdot2006\)

                   \(=4012+2\sqrt{2006^2}\)

Mà \(4012+2\sqrt{2006^2-1}< 4012+2\sqrt{2006^2}\)

\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)

Bình luận (0)

Các câu hỏi tương tự
VJ
Xem chi tiết
NT
Xem chi tiết
TS
Xem chi tiết
TH
Xem chi tiết
VT
Xem chi tiết
TN
Xem chi tiết
AO
Xem chi tiết
NL
Xem chi tiết
HL
Xem chi tiết