\(\frac{a}{b}>\frac{a+2017}{b+2017}\)
\(\frac{a}{b}=\frac{a+2017}{b+2017}\)
vì .... ko nhớ nữa
bn dọc trong quy tắc so sánh 2 phân số nhé
a+2017/b+2017=a+2017-2017/b+2017-2017=a/b
=> a/b=a/b
Vậy a/b=a+2017/b+2017
\(\frac{a}{b}>\frac{a+2017}{b+2017}\)
\(\frac{a}{b}=\frac{a+2017}{b+2017}\)
vì .... ko nhớ nữa
bn dọc trong quy tắc so sánh 2 phân số nhé
a+2017/b+2017=a+2017-2017/b+2017-2017=a/b
=> a/b=a/b
Vậy a/b=a+2017/b+2017
CHO a,b,c,d,e,g\(\in Z\) , BIẾT b,d,g > 0
\(ad-bc=2017\)
\(eg-de=2017\)
A/ SO SÁNH : \(\frac{a}{b}\); \(\frac{c}{d};\frac{e}{g}\)
B/ SO SÁNH : \(\frac{c}{d}\)VỚI \(\frac{a+c}{b+g}\)
so sánh 2 số A và B nếu
\(A=-\frac{1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4};B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)
Cho số a,b e Z;b > 0
So sánh a/b và a+2017/b+2017
So sánh A và B nếu
\(A=\frac{-1}{2018}-\frac{3}{2017^2}-\frac{5}{2017^3}-\frac{7}{2017^4}\)
\(B=\frac{-1}{2018}-\frac{7}{2017^2}-\frac{5}{2017^3}-\frac{3}{2017^4}\)
Cho a,b € Z; a < b và b > 0. Chứng minh rằng \(\frac{a}{b}\)< \(\frac{a+2017}{b+2017}\)
Cho a,b thuộc Z,b khác 0. So sánh hai số hữu tỉ a/b và a+2017/a+2017.
CÁM ƠN NHIỀU! >_<
Cho a, b thuộc Z và a>b>0 Chứng minh rằng \(\frac{a}{b}\)< \(\frac{a+2017}{b+2017}\)
So sánh A và B, biết:
A =\(\frac{10^{2016}+1}{10^{2017}+1}\)và B =\(\frac{10^{2017}+1}{10^{2018}+1}\)
Cho a,b € Z, b >0
So sánh a/b và a+2017/b+2018