\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
Mà \(\frac{49}{50}\)lại nhỏ hơn 1 \(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 1\)
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}< 1\)
1/1*2+1/2*3+...+1/49*50
=1/1-1/2+1/2-1/3+...+1/49-1/50
=1/1-1/50
=50/50-1/50=49/50 <1
\(\Rightarrow\)1/1*2+1/2*3+...+1/49*50 < 1
\(\Rightarrow\)đpcm
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{50}=\frac{49}{50}< 1\)
Vậy biểu thức trên bé hơn 1.