HR

so sánh

A=\(\frac{17^{18}-2}{17^{19}-2}\)và B=\(\frac{17^{17}-2}{17^{18}-2}\)

PQ
11 tháng 3 2018 lúc 13:07

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(A=\frac{17^{18}-2}{17^{19}-2}< \frac{17^{18}-2-32}{17^{19}-2-32}=\frac{17^{18}-34}{17^{19}-34}=\frac{17\left(17^{17}-2\right)}{17\left(17^{18}-2\right)}=\frac{17^{17}-2}{17^{18}-2}=B\)

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~

Bình luận (0)
HN
11 tháng 3 2018 lúc 13:16

Công thức: \(\frac{a}{b}< \frac{a+c}{b+c}\left(\frac{a}{b}< 1;a;b;c\inℕ^∗\right)\)

Ta có:

\(A=\frac{17^{18}-2}{17^{19}-2}< B=\frac{17^{17}-2-32}{17^{18}-2-32}=\frac{17^{17}-34}{17^{18}-34}=\frac{17\left(17^{17}-2\right)}{17\left(17^{18}-2\right)}=\frac{17^{17}-2}{17^{18}-2}\)

Từ đó ta kết luận A < B

Bình luận (0)
PQ
11 tháng 3 2018 lúc 13:39

Xin lỗi bạn mình bị nhầm 

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(A=\frac{17^{18}-2}{17^{19}-2}< \frac{17^{18}-2+36}{17^{19}-2+36}=\frac{17^{18}+34}{17^{19}+34}=\frac{17\left(17^{17}+2\right)}{17\left(17^{18}+2\right)}=\frac{17^{17}+2}{17^{18}+2}=B\)

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Bảo đảm đúng \(100\%\) luôn tin mình đi :) 

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
NA
Xem chi tiết
NC
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
VN
Xem chi tiết
MS
Xem chi tiết
NN
Xem chi tiết
NA
Xem chi tiết