Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{17^{18}-2}{17^{19}-2}< \frac{17^{18}-2-32}{17^{19}-2-32}=\frac{17^{18}-34}{17^{19}-34}=\frac{17\left(17^{17}-2\right)}{17\left(17^{18}-2\right)}=\frac{17^{17}-2}{17^{18}-2}=B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Công thức: \(\frac{a}{b}< \frac{a+c}{b+c}\left(\frac{a}{b}< 1;a;b;c\inℕ^∗\right)\)
Ta có:
\(A=\frac{17^{18}-2}{17^{19}-2}< B=\frac{17^{17}-2-32}{17^{18}-2-32}=\frac{17^{17}-34}{17^{18}-34}=\frac{17\left(17^{17}-2\right)}{17\left(17^{18}-2\right)}=\frac{17^{17}-2}{17^{18}-2}\)
Từ đó ta kết luận A < B
Xin lỗi bạn mình bị nhầm
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{17^{18}-2}{17^{19}-2}< \frac{17^{18}-2+36}{17^{19}-2+36}=\frac{17^{18}+34}{17^{19}+34}=\frac{17\left(17^{17}+2\right)}{17\left(17^{18}+2\right)}=\frac{17^{17}+2}{17^{18}+2}=B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Bảo đảm đúng \(100\%\) luôn tin mình đi :)