Làm dễ hiểu chút
\(A=\left(2^2+4^2+...+100^2\right)-\left(1^2+3^2+...+99^2\right)\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)
\(=\left(2+1\right)\left(2-1\right)+\left(4+3\right)\left(4-3\right)+...+\left(100-99\right)\left(99+100\right)\)
\(=3+7+...+199\)
\(B=3^8.7^8-\left(21^4-1\right)\left(21^4+1\right)\)
\(=21^8-\left(21^8-1\right)=1\)
Vậy A > B