TD

SO SÁNH

a, C= \(\frac{2005^{2005}+1}{2005^{2006}+1}\)và D = \(\frac{2005^{2004}+1}{2005^{2005}+1}\)

H24
21 tháng 1 2020 lúc 21:08

nhân cả C và D với 2005 rồi tách ra so sánh

Bình luận (0)
 Khách vãng lai đã xóa
XO
21 tháng 1 2020 lúc 21:10

Ta có : \(2005C=\frac{2005\left(2005^{2005}+1\right)}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=1+\frac{2004}{2005^{2006}+1}\)

\(2005D=\frac{2005\left(2005^{2004}+1\right)}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=1+\frac{2004}{2005^{2005}+1}\)

Vì \(\frac{2004}{2005^{2006}+1}< \frac{2004}{2005^{2005}+1}\Rightarrow1+\frac{2004}{2005^{2006}+1}< 1+\frac{2004}{2005^{2005}+1}\)

=> 2005.C < 2005.D

=> C < D

Bình luận (0)
 Khách vãng lai đã xóa
AZ
21 tháng 1 2020 lúc 21:11

\(C=\frac{2005^{2005}+1}{2005^{2006}+1}< \frac{2005^{2005}+1+2004}{2005^{2006}+1+2004}=\frac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}=\frac{2005^{2004}+1}{2005^{2005}+1}=D\)

Vậy \(C< D\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
BV
Xem chi tiết
KV
Xem chi tiết
Xem chi tiết
BL
Xem chi tiết
NK
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
CA
Xem chi tiết