Đặt \(A=\frac{2011^{2010}+1}{2011^{2011}+1}\Rightarrow2011A=\frac{2011^{2011}+2011}{2011^{2011}+1}=1+\frac{2010}{2011^{2011}+1}\)
\(B=\frac{2011^{2011}+1}{2011^{2012}+1}\Rightarrow2011B=\frac{2011^{2012}+2011}{2011^{2012}+1}=1+\frac{2010}{2011^{2012}+1}\)
\(2011^{2011}+1< 2011^{2012}+1\)
\(\Rightarrow\frac{2010}{2011^{2011}+1}>\frac{2010}{2011^{2012}+1}\)
\(\Rightarrow2011A>2011B\Rightarrow A>B\)
\(\Rightarrow\frac{2011^{2010}+1}{2011^{2011}+1}>\frac{2011^{2011}+1}{2011^{2012}+1}\)