Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

AG

So sánh:1/1×2+1/2×3+...+1/99×100 và 1

H24
27 tháng 7 2018 lúc 7:56

Ta có : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}.\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)\(< 1\)

Vậy : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}< 1\)

Bình luận (0)
HM
27 tháng 7 2018 lúc 8:00

Đặt :

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)

   \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

  \(=1-\frac{1}{100}\)

 \(=\frac{99}{100}\)

Vậy  \(A=\frac{99}{100}\)

Vì \(\frac{99}{100}< 1\)nên \(A< 1\)

Học tốt #

Bình luận (0)
PD
27 tháng 7 2018 lúc 8:00

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
PT
Xem chi tiết
PL
Xem chi tiết
DH
Xem chi tiết
NP
Xem chi tiết
NL
Xem chi tiết
LS
Xem chi tiết
XD
Xem chi tiết
VT
Xem chi tiết