Có \(x=\frac{2020}{2019}\) và \(y=\frac{2021}{2020}\). Xét phần hơn
Có \(x-1=\frac{2020}{2019}-1=\frac{2020}{2019}-\frac{2019}{2019}=\frac{1}{2019}\)
Có \(y-1=\frac{2021}{2020}-1=\frac{2021}{2020}-\frac{2020}{2020}=\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\Leftrightarrow\frac{2020}{2019}>\frac{2021}{2020}\Rightarrow x>y\)
\(1-\frac{2020}{2019}=-\frac{1}{2019}\)
\(1-\frac{2021}{2020}=-\frac{1}{2020}\)
\(-\frac{1}{2019}< -\frac{1}{2020}\Rightarrow1-\frac{2020}{2019}< 1-\frac{2021}{2020}\)
Trừ cả hai vế cho 1
\(\Rightarrow-\frac{2020}{2019}< -\frac{2021}{2020}\)
\(\Rightarrow\frac{2020}{2019}>\frac{2021}{2020}\)
lm chi tiết giùm cái
x=2020/2019=2019+1/2019=2019/2019+1/2019=1+1/2019
y=2021/2020=2020+1/2020=2020/2020+1/2020=1+1/2020
Vì 2019<2020
=>1+1/2019>1+1/2020
=>x>y
Vầy ms đúng nek m.n
Ta có : \(x=\frac{2020}{2019}=1+\frac{1}{2019}\)
\(y=\frac{2021}{2020}=1+\frac{1}{2020}\)
mà \(\frac{1}{2019}>\frac{1}{2020}\Rightarrow1+\frac{1}{2019}>1+\frac{1}{2020}\)
\(\Rightarrow\frac{2020}{2019}>\frac{2021}{2020}\)
hay \(x>y\)
m.n lm đều đúng
greninja lm hơi tắt nha