Gọi \(B=\sqrt{20+\sqrt{20+...+\sqrt{20}}}\)
\(A=\sqrt{20+\sqrt{20+....+\sqrt{20+5}}}\)
\(A=\sqrt{20+\sqrt{20+...+\sqrt{25}}}\)
\(A=\sqrt{25}=5\)
Vậy A > B hay \(\sqrt{20+\sqrt{20+...+\sqrt{20}< 5}}\)
Đúng 0
Bình luận (0)