a. Ta có: x < 5 ⇔ (a – b)x < 5(a – b)
⇒ a – b > 0 ⇔ a > b
b. Ta có: x > 2 ⇔ (a – b)x < 2(a – b)
⇒ a – b < 0 ⇔ a < b
a. Ta có: x < 5 ⇔ (a – b)x < 5(a – b)
⇒ a – b > 0 ⇔ a > b
b. Ta có: x > 2 ⇔ (a – b)x < 2(a – b)
⇒ a – b < 0 ⇔ a < b
Giải các phương trình :
a) \(\left(x-1\right)^2< x\left(x+3\right)\)
b) \(\left(x-2\right)\left(x+2\right)>x\left(x-4\right)\)
c) \(2x+3< 6-\left(3-4x\right)\)
d) \(-2-7x>\left(3+2x\right)-\left(5-6x\right)\)
Giải các bất phương trình :
a) \(\left(x+2\right)^2< 2x\left(x+2\right)+4\)
b) \(\left(x+2\right)\left(x+4\right)>\left(x-2\right)\left(x+8\right)+26\)
Cho a, b, c thuộc R. CM:
1, \(ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
2, \(\dfrac{a^3+b^3}{2}\ge\left(\dfrac{a+b}{2}\right)^3\)
3, \(a^4+b^4\ge a^3b+ab^3\)
4, \(a^4+3\ge4a\)
5, \(a^3+b^3+c^3\ge3abc\left(a,b,c>0\right)\)
6, \(a^4+b^4\le\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\left(a,b\ne0\right)\)
7, \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\left(a,b\ge1\right)\)
8, \(\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\)
Bài 1 : Giải bất phương trình :
a. \(\frac{1-4x}{12}< \frac{5-3x}{9}\)
b. \(\frac{x-1}{x-2}>0\)
c. \(\frac{x+9}{x-1}>5\)
d. \(\frac{-3+1}{2x+1}< -2\)
e. \(\left(x-1\right)\left(x+2\right)< \left(x+4\right)^2-4\)
1, Giải và biện luận
a) (m-1)x+1-m2
b) (x+m)(m-1)≤m2+2(m-1)
c)\(\frac{x-m}{x-m-1}>1\)
2, Giải các bất phương trình
a) \(\frac{2x+1}{x-1}-\frac{2x+1}{x+1}>0\)
b)\(\left|2x-1\right|< \left|x-2\right|\)
c)\(\left|x-3\right|>2x-1\)
d)\(\left|\left(x-1\right)-3\right|< 2x+1\)
Đố :
Tìm sai lầm trong các "lời giải" sau :
a) Giải bất phương trình \(-2x>23\). Ta có :
\(-2x>23\Leftrightarrow x>23+2\Leftrightarrow x>25\)
Vậy nghiệm của bất phương trình là : \(x>25\)
b) Giải bất phương trình \(-\dfrac{3}{7}x>12\). Ta có :
\(-\dfrac{3}{7}x>12\Leftrightarrow\left(-\dfrac{7}{3}\right).\left(-\dfrac{3}{4}x\right)>\left(-\dfrac{7}{3}\right).12\Leftrightarrow x>-28\)
Vậy nghiệm của bất phương trình là \(x>-28\)
Giải các bất phương trình :
a) \(8x+3\left(x+1\right)>5x-\left(2x-6\right)\)
b) \(2x\left(6x-1\right)>\left(3x-2\right)\left(4x+3\right)\)
a.\(\left|3x\right|=x+7\)
b.\(\left|-4x\right|=-2x+11\)
c.\(\left|5x\right|=3x+4\)
d.\(\left|3x\right|-x-4=0\)
e.\(|9-\left|-5x\right|+2x=0\)
f.\(\left|x-9\right|=2x+5\)
g.\(\left|6-x\right|=2x-3\)
h.\(\left|2x+1\right|=6x+2\)
i.\(\left|4x\right|=2x+12\)
j.\(\left|4-x\right|=2x+1\)
Tìm các số tự nhiên \(n\) thỏa mãn mỗi bất phương trình sau :
a) \(3\left(5-4n\right)+\left(27+2n\right)>0\)
b) \(\left(n+2\right)^2-\left(n-3\right)\left(n+3\right)\le40\)