A = \(\frac{3}{2}+\frac{7}{6}+\frac{13}{12}+...+\frac{91}{90}+\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{6}\right)+\left(1+\frac{1}{12}\right)+...+\left(1+\frac{1}{90}\right)\)
\(=\left(1+\frac{1}{1.2}\right)+\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+...+\left(1+\frac{1}{9.10}\right)\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)+\left(1+1+1+...+1\right)\)(9 số hạng 1)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)+1.9\)
\(=\left(1-\frac{1}{10}\right)+9=10-\frac{1}{10}=\frac{99}{10}>\frac{98}{11}\)
a=1+1/1.2+1+1+1/2.3+....+1+1/9.10
a=1+1+...+1(9 chữ số 1)+1/1-1/2+1/2-1/3+...+1/9-1/10
a=9+1-1/10
a=9+9/10=9+0.9=9.9
b=98/11<98/10=9.8<9.9
=>vậy a>b