A. ta có :
\(\hept{\begin{cases}\frac{a+1}{a}=1+\frac{1}{a}\\\frac{a+3}{a+2}=1+\frac{1}{a+2}\end{cases}\text{ mà }\frac{1}{a}>\frac{1}{a+2}\Rightarrow\frac{a+1}{a}>\frac{a+3}{a+2}}\)
B. \(\hept{\begin{cases}\frac{a}{a+6}=1-\frac{6}{a+6}\\\frac{a+1}{a+7}=1-\frac{6}{a+7}\end{cases}\text{mà }}\frac{6}{a+6}>\frac{6}{a+7}\Leftrightarrow-\frac{6}{a+6}< -\frac{6}{a+7}\Leftrightarrow\frac{a}{a+6}< \frac{a+1}{a+7}\)