EC

So sánh \(M=\frac{100^{100}+1}{100^{99}+1}\)\(N=\frac{100^{101}+1}{100^{100}+1}\)

TD
20 tháng 10 2015 lúc 12:21

M= \(\frac{100^{100}+1}{100^{99}+1}=\frac{100^{100}+100-99}{100^{99}+1}=\frac{100^{100}+100}{100^{99}+1}-\frac{99}{100^{99}+1}=\frac{100.\left(100^{99}+1\right)}{100^{99}+1}-\frac{99}{100^{99}+1}\)

\(=100-\frac{99}{100^{99}+1}\)

N= \(\frac{100^{101}+1}{100^{100}+1}=\frac{100^{101}+100-99}{100^{100}+1}=\frac{100^{101}+100}{100^{100}+1}-\frac{99}{100^{100}+1}\)

\(=\frac{100.\left(100^{100}+1\right)}{100^{100}+1}-\frac{99}{100^{100}+1}=100-\frac{99}{100^{100}+1}\)

Vi 100100+1>10099+1

=> \(\frac{99}{100^{99}+1}>\frac{99}{100^{100}+1}\)

=> \(100-\frac{99}{100^{99}+1}

Bình luận (0)
VQ
20 tháng 10 2015 lúc 12:21

uk ai cũng có lúc nhầm mà chẳng sao đâu bạn ak

Bình luận (0)