Chứng minh rằng \(\left(\frac{9}{11}-0,81\right)^{2008}=\left(\frac{9}{11}\right)^{2008}\times\frac{1}{10^{4016}}\)
Tính A= \(\left[\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\right]:\frac{2014}{2015}\)
So sánh 199110 với 99612
So Sánh M=\(\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\) với \(\frac{11}{19}\)
Bài 1: Chứng minh rằng: \(A=0,5.\left(2007^{2015}-2003^{2003}\right)\) là số nguyên.
Bài 2: Chứng minh rằng: \(B=\left(\frac{9}{11}-0,81\right)^{2004}\)viết dưới dạng thập phân thì sau dấu phẩy có ít nhất 4000 chữ số 0.
Cho B=\(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right).\left(1-\frac{1}{100}\right)\)
So sánh B với 11/21
Bài 1 : cho 2 biểu thức
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(B=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)
So sánh A với \(\frac{1}{21}\)
So sánh B với \(\frac{11}{21}\)
Cho A = \(\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)\left(1-\frac{1}{81}\right)\left(1-\frac{1}{100}\right)\)So sánh A với \(\frac{11}{19}\)
Tìm x biết:
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
b) \(\left(3x-\frac{1}{4}\right).\left(x+\frac{1}{2}\right)=0\)
c) \(|x+\frac{1}{5}|-\frac{1}{2}=\frac{9}{10}\)
d) \(\sqrt{0,81}.\left(\sqrt{x}+\sqrt{\frac{16}{49}}\right)=\frac{9}{10}\)
f) \(|\frac{1}{3}.\sqrt{x+1}-\frac{2}{9}|-\frac{1}{6}=\frac{1}{9}\)
So sánh:
a)\(\frac{-2002}{2003}\)và\(\frac{-2005}{2004}\)
b)\(\frac{-1}{10^5}\)và\(\frac{-9}{-10}\)
c)\(\frac{22}{29}\)và\(\frac{24}{27}\)
d)\(\left(0.4\right)^4\)và\(\left(0.8\right)^4\)