MH

So sánh: \(\frac{n+1}{n+2}\)và \(\frac{n+3}{n+4}\)

XO
25 tháng 8 2020 lúc 17:16

Đặt A = \(\frac{n+1}{n+2}\)

=> \(\frac{1}{A}=\frac{n+2}{n+1}\)

=> \(\frac{1}{A}-1=\frac{n+2-n-1}{n+1}=\frac{1}{n+1}\)

Đặt B = \(\frac{n+3}{n+4}\)

=> \(\frac{1}{B}=\frac{n+4}{n+3}\)

=> \(\frac{1}{B}-1=\frac{n+4-n-3}{n+3}=\frac{1}{n+3}\)

Vì \(\frac{1}{n+1}>\frac{1}{n+3}\Rightarrow\frac{1}{A}-1>\frac{1}{B}-1\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

Vậy \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
25 tháng 8 2020 lúc 19:23

Đặt \(A=\frac{n+1}{n+2}\)

\(\Rightarrow\frac{1}{A}=\frac{n+2}{n+1}\)

\(\Rightarrow\frac{1}{A}-1=\frac{n+2-n+1}{n+1}=\frac{1}{n+1}\)

Đặt \(B=\frac{n+3}{n+4}\)

\(\Rightarrow\frac{1}{B}=\frac{n+4}{n+3}\)

\(\Rightarrow\frac{1}{B}-1=\frac{n+4-n-3}{n+3}=\frac{1}{n+3}\)

Vì \(\frac{1}{n+1}>\frac{1}{n+3}\Rightarrow\frac{1}{A}-1>\frac{1}{B}-1\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

Vậy \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NU
Xem chi tiết
PK
Xem chi tiết
CN
Xem chi tiết
NN
Xem chi tiết
PO
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết
DV
Xem chi tiết
NP
Xem chi tiết