\(\Rightarrow\frac{a}{b}>1\)
\(\Rightarrow a>b\)
\(\Rightarrow am>bm\)
\(\Rightarrow am+ab>bm+ab\)
\(\Rightarrow a\left(m+b\right)>b\left(a+m\right)\)
\(\Rightarrow\frac{a}{b}>\frac{a+m}{b+m}\)
TrTrịnh dinh anh tuan sai roi
a/b<a+m/b+m
Vì: \(\frac{a}{b}\)=\(\frac{a\left(b+m\right)}{b\left(b+m\right)}\)
và \(\frac{a+m}{b+m}\)=\(\frac{a\left(b+m\right)}{b\left(b+m\right)}\)
Vậy có 3 trường hợp:
TH1: a/b < 1
=> a < b
=> a.m < b.m
=> a.m + a.b < b.m + a.b
=> a.(m + b) < b.(a + m)
=> a/b < a+m/b+m
TH2: a/b > 1
=> a > b
=> a.m > b.m
=> a.m + a.b > b.m + a.b
=> a.(m + b) > b.(a + m)
=> a/b > a+m/b+m