KS

so sánh : \(\frac{10^{1990}+1}{10^{1991}+1}\) và \(\frac{10^{1991}+1}{10^{1992}+1}\)

HS
25 tháng 4 2019 lúc 20:28

Đặt \(A=\frac{10^{1990}+1}{10^{1991}+1}\)

\(\Rightarrow10A=\frac{10\cdot(10^{1990}+1)}{10^{1991}+1}\)

\(=\frac{10^{1991}+10}{10^{1991}+1}=\frac{10^{1991}+1+9}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)

Đặt \(B=\frac{10^{1991}+1}{10^{1992}+1}\)

\(\Rightarrow10B=\frac{10\cdot(10^{1991}+1)}{10^{1992}+1}=\frac{10^{1992}+10}{10^{1992}+1}=\frac{10^{1992}+1+9}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)

Tự so sánh được rồi -_-

Bình luận (0)
KS
25 tháng 4 2019 lúc 20:35

sao ra được 1+ gì gì đó vậy bạn

Bình luận (0)

Các câu hỏi tương tự
LQ
Xem chi tiết
TN
Xem chi tiết
VH
Xem chi tiết
VT
Xem chi tiết
TH
Xem chi tiết
XZ
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
TT
Xem chi tiết