MA

so sánh căn(4+căn(4+căn(4+căn...+căn(4)))) với 3

 

LP
24 tháng 8 2023 lúc 21:21

 Ta đặt \(f\left(n\right)=\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\) (\(n\) dấu căn)

 Xét phương trình \(x^2-x-4=0\), pt này có nghiệm \(t=\dfrac{1+\sqrt{17}}{2}< 3\). Ta sẽ chứng minh \(f\left(n\right)< t,\forall n\inℕ^∗\)

 Dễ thấy \(f\left(1\right)< t\). Giả sử \(f\left(n\right)< t\). Khi đó:

 \(f\left(n+1\right)=\sqrt{4+f\left(n\right)}< \sqrt{4+t}\).

 Mà \(4+t=t^2\)  (do \(t\) là nghiệm của pt \(x^2-x-4=0\)) nên suy ra \(f\left(n+1\right)< \sqrt{4+t}=\sqrt{t^2}=t\).

 Vậy \(f\left(n+1\right)< t\). Theo nguyên lí quy nạp \(\Rightarrow f\left(n\right)< t,\forall n\inℕ^∗\)

 Mà \(t< 3\) \(\Rightarrow f\left(n\right)< 3\)\(\forall n\inℕ^∗\)

 Vậy \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}< 3\) 

 

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NT
Xem chi tiết
QN
Xem chi tiết