a)Ta có:\(\frac{n+2}{n+3}=1-\frac{1}{n+3}\)
+)Ta lại có:\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
+)Ta thấy \(\frac{1}{n+3}>\frac{1}{n+4}\)
=>\(1-\frac{1}{n+3}< 1-\frac{1}{n+4}\)
Hay \(\frac{n+2}{n+3}< \frac{n+3}{n+4}\)
a)Ta có:\(\frac{n+2}{n+3}=1-\frac{1}{n+3}\)
+)Ta lại có:\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
+)Ta thấy \(\frac{1}{n+3}>\frac{1}{n+4}\)
=>\(1-\frac{1}{n+3}< 1-\frac{1}{n+4}\)
Hay \(\frac{n+2}{n+3}< \frac{n+3}{n+4}\)
Chứng tỏ:
\(N=\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}< \frac{3}{4}\)
Bài nâng cao:
Cho \(A=\frac{n+1}{n-2}\)
a) Tìm n để \(A\)là phân số
b) Tìm \(n\in Z\)để \(A\)là số nguyên
So sánh:
\(P=\frac{10^{11}-1}{10^{12}-1}\)và \(Q=\frac{10^{10}+1}{10^{11}+1}\)
câu 1: so sánh A và B
A=\(\frac{10^{15}+1}{10^{16}+1}\)
B=\(\frac{10^{16}+1}{10^{17}+1}\)
Câu 2:so sánh 637 và 1612
( \(\frac{1}{32}\))7 và( \(\frac{1}{16}\))9
câu 3: so sánh
A=\(\frac{10^{1992}+1}{10^{1991}+1}\), B=\(\frac{10^{1993}+1}{10^{1992}+1}\)
câu 4 : CMR :\(\frac{1}{4}\)+\(\frac{1}{16}\)+\(\frac{1}{36}\)+\(\frac{1}{64}\)+.....+\(\frac{1}{10000}\)<\(\frac{1}{2}\)
câu 5 A=1+\(\frac{2^2}{3^2}\)+\(\frac{2^2}{5^2}\)+\(\frac{2^2}{7^2}\)+.......+\(\frac{2^2}{2009^2}\)
So sanh A với 3
câu 6 cho S = \(\frac{3}{4}\)+\(\frac{8}{9}\)+\(\frac{15}{16}\)+......+\(\frac{n^2-1}{n^2}\)
CMR với mọi số tự nhiên n\(\ge\)2 thì 3 không thể là số nguyên
So sánh các phân số:
a) A=\(\frac{10^7+5}{10^7-8}\) và B=\(\frac{10^8+6}{10^8-7}\)
b)A=\(\frac{10^{1992}+1}{10^{1991}+1}\) và B=\(\frac{10^{1993}+1}{10^{1992}+1}\)
c)\(\frac{n}{n+3}\) và \(\frac{n-1}{n+4}\)
Bài 1:
a,So sánh 2 phân sô \(\frac{n}{n+3}\)và \(\frac{n+1}{n+2}\)với (n thuộc N*)
b,So sánh A=\(\frac{10^{11}-1}{10^{12}-1}\)và B=\(\frac{10^{10}1-1}{10^{11}-1}\)
Câu 1:Không quy đồng hãy tính hợp lí các tổng sau
a.\(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
b.\(B=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.2}+\frac{1}{2.15}+\frac{13}{15.4}\)
Câu 2:So sánh không qua quy đồng:
\(A=\frac{-7}{10^{2005}}+\frac{-15}{10^{2006}};B=\frac{-15}{10^{2005}}+\frac{-7}{10^{2006}}\)
Câu 3:
1/cho \(A=\frac{n-2}{n+3}\)
a.A là 1 phân số
b.A là 1 số nguyên
2/a.tìm số tự nhiên n để phân số \(B=\frac{10n-3}{4n-10}\)đạt GTLN.Tìm GTLN đó
b.Tìm các số tự nhiên x,y sao cho :\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
so sánh Avà B :
a)A=\(\frac{n}{n+1}\);B=\(\frac{n+2}{n+3}\)
b)A=\(\frac{n}{2n+1}\);B=\(\frac{3n+1}{6n+3}\)
c)A=\(\frac{10^7+5}{10^7-8}\);B=\(\frac{10^8+6}{10^8-7}\)
d)A=\(\frac{10^{1992}+1}{10^{1991}+1}\);B=\(\frac{10^{1993}+1}{10^{1992}+1}\)
Bài 1: Chứng tỏ
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}< \frac{3}{4}\)
Bài 2: Bài toán nâng cao:
Cho \(A=\frac{n+1}{n-2}\)
a) Tìm n để \(A\)là phân số
b) Tìm \(n\in Z\)để \(A\)là số nguyên
Bài 3: So sánh:
\(P=\frac{10^{11}-1}{10^{12}-1}\)và \(Q=\frac{10^{10}+1}{10^{11}+1}\)
3 bạn xog đầu mình sẽ tick
cho \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{99}{100};N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{100}{101}\)
a/ so sánh M và N
b/ tính M nhân N
c/ CMR : M < 1 / 10
a) Cho \(a,b,n\inℕ^∗\) . Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b) Cho \(A=\frac{10^{11}-1}{10^{12}-1}\); \(B=\frac{10^{10}-1}{10^{11}-1}\). Hãy so sánh
c) Rút gọn biểu thức \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)