a) Ta có \(5^{300}=5^{3.100}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)
Vì 125 < 243 nên \(125^{100}< 243^{100}\)
Vậy \(5^{300}< 3^{500}\)
b) Ta có \(2^{15}=2^{13+2}=2^{13}.2^2=4.2^{13}\)
Vì 4<7 nên \(4.2^{13}< 7.2^{13}\)
Vậy \(2^{15}< 7.2^{13}\)
\(a)\)\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(125^{100}< 243^{100}\) nên \(5^{300}< 3^{500}\)
Vậy \(5^{300}< 3^{500}\)
\(b)\)\(2^{15}=2^{13+2}=2^{13}.2^2=4.2^{13}< 7.2^{13}\)
Vậy \(7.2^{13}>2^{15}\)
Chúc bạn học tốt ~
5300 và 3500
5300 = 53.100 = (53)100 = 125100
3500 = 35.100 = (35)100 = 243100
Vì 125100 < 243100 nên 5300 < 3500