Ta có:
10A=1016+10/1016+1=1+(9/1016+1)
10B=1017+10/1017+1=1+(9/1017+1)
Vì 9/1016+1 > 9/1017+1 nên 10A>10B,do đó A>B
Ta có:
10A=1016+10/1016+1=1+(9/1016+1)
10B=1017+10/1017+1=1+(9/1017+1)
Vì 9/1016+1 > 9/1017+1 nên 10A>10B,do đó A>B
so sánh
a, A=\(\frac{10^{17}-1}{10^{16}-1}vaB=\frac{10^{16}+2}{10^{15}+2}\)
b,\(C=\frac{2017^{15}+1}{2017^{16}+1}vaO=\frac{2017^{16}-1}{2017^{17}-1}\)
c,\(E=\frac{99^{15}-1}{99^{16}-1}vaF=\frac{99^{16}+2}{99^{17}+2}\)
So sánh A và B biết:\(A=\frac{10^{15}+1}{10^{16}+1}vàB=\frac{10^{16}+1}{10^{17}+1}\)
So sánh A và B biết:
\(A=\frac{10^{15}+1}{10^{16}+1}\)và \(B=\frac{10^{16}+1}{10^{17}+1}\)
so sánh A và B biết:
A=\(\frac{10^{15}+1}{10^{16}+1}\)
B=\(\frac{10^{16}+1}{10^{17}+1}\)
So sánh:
\(A=\frac{10^{15}+1}{10^{16}+1}\)và \(B=\frac{10^{16}+1}{10^{17}+1}\)
so sánh 2 phân số sau
A=\(\frac{10^{15}+1}{10^{16}+1}\)và B=\(\frac{10^{16}+1}{10^{17}+1}\)
giúp mk nhé
So sánh A và B, biết:
A=\(\frac{10^{15}+1}{10^{16}+1}\) ; B=\(\frac{10^{16}+1}{10^{17}+1}\)
So sánh hai phân số \(A=\frac{10^{15}+1}{10^{16^{ }}+1}\) và \(B=\frac{10^{16+1}}{10^{17^{ }}+1}\)
So sánh A và B bằng 4 cách
A=\(\frac{10^{15}+1}{10^{16}+1}\) B=\(\frac{10^{16}+1}{10^{17}+1}\)