H24

So sánh \(A=\frac{2^{2018}-3}{2^{2017}-1}\) và \(B=\frac{2^{2017}-3}{2^{2016}-1}\)

CD
16 tháng 2 2020 lúc 16:55

Ta có: \(\frac{1}{2}A=\frac{2^{2018}-3}{2^{2017}-1}.\frac{1}{2}=\frac{2^{2018}-3}{2^{2018}-2}=\frac{2^{2018}-2-1}{2^{2018}-2}=1-\frac{1}{2^{2018}-2}\)

Tương tự ta có: \(\frac{1}{2}B=1-\frac{1}{2^{2017}-2}\)

Vì \(2^{2018}>2^{2017}\)\(\Rightarrow2^{2018}-2>2^{2017}-2\)

\(\Rightarrow\frac{1}{2^{2018}-2}< \frac{1}{2^{2017}-2}\)\(\Rightarrow1-\frac{1}{2^{2018}-2}>1-\frac{1}{2^{2017}-2}\)

hay \(\frac{1}{2}A>\frac{1}{2}B\)\(\Rightarrow A>B\)( vì \(\frac{1}{2}>0\))

Vậy \(A>B\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
ND
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
TK
Xem chi tiết
KV
Xem chi tiết