Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

ED

so sánh A=\(\frac{2015^{2016}+1}{2015^{2017}+1}\) và B=\(\frac{2015^{2017}+1}{2015^{2018}+1}\)

NN
26 tháng 3 2017 lúc 12:03

Áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)ta có:

\(B=\frac{2015^{2017}+1}{2015^{2018}+1}< \frac{2015^{2017}+1+2014}{2015^{2018}+1+2014}=\frac{2015^{2017}+2015}{2015^{2018}+2015}\)

\(=\frac{2015\left(2015^{2016}+1\right)}{2015\left(2015^{2017}+1\right)}=\frac{2015^{2016}+1}{2015^{2017}+1}\)

\(\Rightarrow\frac{2015^{2017}+1}{2015^{2018}+1}< \frac{2015^{2016}+1}{2015^{2017}+1}\)

Vậy \(B< A\)

Hay \(A>B\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
VP
Xem chi tiết
PQ
Xem chi tiết
LL
Xem chi tiết
TL
Xem chi tiết
()
Xem chi tiết