TH

So sánh 

\(A=\frac{10^{1990}+1}{10^{1991}+1}\)

\(B=\frac{10^{1991}+1}{10^{1992}+1}\)

KN
11 tháng 5 2017 lúc 17:00

Ta có : 

A = \(\frac{10^{1990}+1}{10^{1991}+1}\)

10A = \(\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)

10A = \(\frac{10^{1991}+10}{10^{1991}+1}\)

10A = \(\frac{10^{1991}+1+9}{10^{1991}+1}\)

10A = \(1+\frac{9}{10^{1991}+1}\left(1\right)\)

Ta  lại có :

B = \(\frac{10^{1991}+1}{10^{1992}+1}\)

10B = \(\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)

10B = \(\frac{10^{1992}+10}{10^{1992}+1}\)

10B = \(\frac{10^{1992}+1+9}{10^{1992}+1}\)

10B = \(1+\frac{9}{10^{1992}+1}\left(2\right)\)

Từ \(\left(1\right)va\left(2\right)\)

Ta có :\(1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)

\(\Rightarrow\)10A > 10B 

\(\Rightarrow\)A > B 

Bình luận (0)
TV
11 tháng 5 2017 lúc 16:36

A > B nha

Bình luận (0)
HH
11 tháng 5 2017 lúc 16:46

10A=10^1991+10/10^1991+1       ;10B=10^1992+10/10^1992+1

10A=1+(10^1991+10-10^1991-1/10^1991+1)         ;10B=1+(10^1992+10-10^1992-1/10^1992+1)

10A=1+(9/10^1991+1)                                   ; 10B=1+(9/10^1992+1)

Có: 9/10^1991+1   >   9/10^1992+1

=>10A>10B

=>A>B

Bình luận (0)

Các câu hỏi tương tự
LQ
Xem chi tiết
VH
Xem chi tiết
TN
Xem chi tiết
VT
Xem chi tiết
KS
Xem chi tiết
XZ
Xem chi tiết
HH
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết