\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+10}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)
\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+10}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)
Vì \(10^{1991}< 10^{1992}\Rightarrow1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)
\(\Rightarrow\frac{10^{1990}+1}{10^{1991}+1}>\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow A>B\)
Ta có : \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)
Mà : \(\frac{10^{1991}+1+9}{10^{1992}+1+9}=\frac{10^{1991}+10}{10^{1992}+10}\)
\(=\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)
\(=\frac{10^{1990}+1}{10^{1991}+1}\)
\(\Rightarrow B< A\)
Giải
+) Ta có \(A=\frac{10^{1990}+1}{10^{1991}+1}\)
\(10A=\frac{10\left(10^{1990}+1\right)}{10^{1991}+1}\)
\(=\frac{10.10^{1990}+10.1}{10^{1991}+1}\)
\(=\frac{10^{1991}+10}{10^{1991}+1}\)
\(=\frac{10^{1991}+1+9}{10^{1991}+1}\)
\(=\frac{10^{1991}+1}{10^{1991}+1}+\frac{9}{10^{1991}+1}\)
\(=1+\frac{9}{10^{1991}+1}\)
+) Ta có \(B=\frac{10^{1991}+1}{10^{1992}+1}\)
\(10B=\frac{10\left(10^{1991}+1\right)}{10^{1992}+1}\)
\(=\frac{10.10^{1991}+10.1}{10^{1992}+1}\)
\(=\frac{10^{1992}+10}{10^{1992}+1}\)
\(=\frac{10^{1992}+1+9}{10^{1992}+1}\)
\(=\frac{10^{1992}+1}{10^{1992}+1}+\frac{9}{10^{1992}+1}\)
\(=1+\frac{9}{10^{1992}+1}\)
+) Vì \(10^{1991}+1< 10^{1992}+1\)
\(\Rightarrow\frac{9}{10^{1991}+1}>\frac{9}{10^{1992}+1}\)
\(\Rightarrow1+\frac{9}{10^{1991}+1}>\text{}1+\frac{9}{10^{1992}+1}\text{}\)
Hay \(10A>10B\)
\(\Rightarrow A>B\)