TN

So sánh :

\(A=\frac{10^{1990}+1}{10^{1991}+1}\) và \(B=\frac{10^{1991}+1}{10^{1992}+1}\)

VI

\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+10}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)

\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+10}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)

Vì \(10^{1991}< 10^{1992}\Rightarrow1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)

\(\Rightarrow\frac{10^{1990}+1}{10^{1991}+1}>\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow A>B\)

Bình luận (0)

Ta có : \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)

Mà : \(\frac{10^{1991}+1+9}{10^{1992}+1+9}=\frac{10^{1991}+10}{10^{1992}+10}\)

\(=\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)

\(=\frac{10^{1990}+1}{10^{1991}+1}\)

\(\Rightarrow B< A\)

Bình luận (0)

                                           Giải

                           +) Ta có \(A=\frac{10^{1990}+1}{10^{1991}+1}\)

                                        \(10A=\frac{10\left(10^{1990}+1\right)}{10^{1991}+1}\)

                                                 \(=\frac{10.10^{1990}+10.1}{10^{1991}+1}\)

                                                 \(=\frac{10^{1991}+10}{10^{1991}+1}\)

                                                  \(=\frac{10^{1991}+1+9}{10^{1991}+1}\)

                                                   \(=\frac{10^{1991}+1}{10^{1991}+1}+\frac{9}{10^{1991}+1}\)

                                                    \(=1+\frac{9}{10^{1991}+1}\)

                         +) Ta có \(B=\frac{10^{1991}+1}{10^{1992}+1}\)

                                        \(10B=\frac{10\left(10^{1991}+1\right)}{10^{1992}+1}\)

                                                 \(=\frac{10.10^{1991}+10.1}{10^{1992}+1}\)

                                                 \(=\frac{10^{1992}+10}{10^{1992}+1}\)

                                                  \(=\frac{10^{1992}+1+9}{10^{1992}+1}\)

                                                   \(=\frac{10^{1992}+1}{10^{1992}+1}+\frac{9}{10^{1992}+1}\)

                                                    \(=1+\frac{9}{10^{1992}+1}\)

+) Vì \(10^{1991}+1< 10^{1992}+1\)

     \(\Rightarrow\frac{9}{10^{1991}+1}>\frac{9}{10^{1992}+1}\)

    \(\Rightarrow1+\frac{9}{10^{1991}+1}>\text{​​}1+\frac{9}{10^{1992}+1}\text{​​}\)

Hay \(10A>10B\)

 \(\Rightarrow A>B\)

Bình luận (0)

Các câu hỏi tương tự
LQ
Xem chi tiết
VH
Xem chi tiết
KS
Xem chi tiết
TH
Xem chi tiết
XZ
Xem chi tiết
VT
Xem chi tiết
HH
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết