Áp dụng tính chất của các dãy số bằng nhau ta có :
a/b = b/c = c/a = a + b + c/ b + c + a
=> a/b = b/c = c/a = 1
Vậy....
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Áp dụng tính chất của các dãy số bằng nhau ta có :
a/b = b/c = c/a = a + b + c/ b + c + a
=> a/b = b/c = c/a = 1
Vậy....
Cho các số hữu tỉ: \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{m}{n}\). Biết ad-bc = 1; cn-dm = 1; b,d,n > 0
So sánh y với t biết \(t=\frac{a+m}{b+m}\)với b+n khác 0
Giúp mình với
a, Cho :\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a,b,c khác 0 và a+b+c khác 0 . So sánh a, b, c .
b, Cho : \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)và x,y,z khác 0 ; x + y + z khác 0 . Tính \(\frac{x^{333}.y^{666}}{z^{999}}\)
c, Cho : ac = b2 ; ab = c2 ( a+b+c khác 0 ) . Tính \(\frac{b^{333}}{c^{111}.a^{222}}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0,a khác b , c khác d . CMR \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0 . CMR c = 0
MAI MÌNH NỘP RỒI GIÚP MÌNH VỚI
Cho các số hữu tỉ: \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{m}{n}\)biết ad - bc = 1; cn - dm = 1; b,d,n>0.
So sánh y với t biết: \(t=\frac{a+m}{b+n}\)với b+n khác 0
Mình xin cảm ơn trước
CHO a,b,c,d,e,g\(\in Z\) , BIẾT b,d,g > 0
\(ad-bc=2017\)
\(eg-de=2017\)
A/ SO SÁNH : \(\frac{a}{b}\); \(\frac{c}{d};\frac{e}{g}\)
B/ SO SÁNH : \(\frac{c}{d}\)VỚI \(\frac{a+c}{b+g}\)
cho a,b,c,d,e,g thuộc Z trong đó a,d,g >0, biết ad-bc=2015;cg-de=2015
So sánh a) \(\frac{a}{b},\frac{c}{d},\frac{e}{g}\)
b) So sánh \(\frac{e}{d}với\frac{a+e}{b+g}thuộcN\cdot\)
Cho các số hữa tỉ x=\(\frac{a}{b}\) y=\(\frac{c}{d}\) z=\(\frac{m}{n}\)
Biết ad-bc=1;cn-dm=1 và b,d,n>0
a) Hãy so sánh các số x,y,z
b) So sánh y và t, biết
t=\(\frac{a+m}{b+n}\) (với b+n khác 0)
Bài 1: cho tỷ lệ thức a/b=c/d khác 1 và -1 và c khác 0. Hãy chứng minh:
A) \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
B) \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)
Bài 2: cho biết a=c+b và c=bd/b-d(b khác d khác 0). Hãy chứng minh a/b=c/d.
Bài 3:Hãy chứng minh c =0 khi \(\frac{a+b+c}{a+b-c}=\frac{a+b+c}{a-b-c}\) với b khác 0
1.Biết : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)với a ,b ,c ,d khác 0
CMR: \(\frac{a}{b}=\frac{c}{d}ho\text{ặc}\frac{a}{b}=\frac{b}{c}\)