Sửa đề : \(B=1+2+2^2+2^3+...+2^{2019}\)
\(2B=2+2^2+2^3+2^4...+2^{2019}+2^{2020}\)
\(2B-B=\left(2+2^2+2^3+...+2^{2020}\right)-\left(1+2+2^2+...+2^{2019}\right)\)
\(\Leftrightarrow2B-B=B=2^{2020}-1=A\Rightarrow B=A\)
http://bangbang4399.com/landing-page02.html?_cp=200&gclid=EAIaIQobChMI34bh_aCk6wIV2bWWCh3pVAO2EAAYASAAEgKksvD_BwE
Đây hình như là Toán lớp 6 mà! B = 1 + 2 + 22 + 23 + ... + 22019 mới đúng chứ nhỉ?! :>>
Ta có: \(B=1+2+2^2+...+2^{2019}\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{2020}\)
\(2B-B=\left(2+2^2+2^3+...+2^{2020}\right)-\left(1+2+2^2+...+2^{2019}\right)\)
\(B=2^{2020}-1\)
\(\Rightarrow A=B\)
Vậy \(A=B\).
dgydgv8w9rygvptwp7fy7w4086rwf7tre7t937rqrf4564657ryryef6r3tfygr8wt4
B = 1 + 2 + 22 + 23 + ... + 22019
2B = 2( 1 + 2 + 22 + 23 + ... + 22019 )
2B = 2 + 22 + 23 + ... + 22020
B = 2B - B
= 2 + 22 + 23 + ... + 22020 - ( 1 + 2 + 22 + 23 + ... + 22019 )
= 2 + 22 + 23 + ... + 22020 - 1 - 2 - 22 - 23 - ... - 22019
= 22020 - 1
=> A = B