Ta có
A = 2017/2019 =1 - 2/2019
B = 2021/2023 = 1 - 2/2013
MÀ 2/2019 < 2/2013 => 1 - 2/2019 > 1 - 2/2013 hay A > B
Vậy A > B
Easy mà bạn :
Ta có :
\(A=\frac{2017}{2019}=1-\frac{2}{2019}\)
\(B=\frac{2021}{2023}=1-\frac{2}{2023}\)
Do \(\frac{2}{2019}>\frac{2}{2023}\)
\(\Rightarrow1-\frac{2}{2019}< 1-\frac{2}{2023}\)
\(\Rightarrow A< B\)
~
Ta có : \(1-\frac{2017}{2019}=\frac{2}{2019};1-\frac{2021}{2023}=\frac{2}{2023}\)
Vì \(\frac{2}{2019}>\frac{2}{2023}\)nên \(\frac{2017}{2019}< \frac{2021}{2023}\).
~~~~~~~~~~~HOK TỐT~~~~~~~~~~~~
Ta có
\(1-\frac{2017}{2019}=\frac{2}{2019}\)
\(1-\frac{2021}{2023}=\frac{2}{2023}\)
Mà \(\frac{2}{2019}>\frac{2}{2023}\)
\(\Rightarrow\frac{2017}{2019}< \frac{2021}{2023}\)
Ta có :
A = 2017/2019 = 1 - 2/2019
B = 2021/2023 = 1 - 2/2023
Mà 2/2019 > 2/2023 => 1 - 2/2019 < 1 - 2/2023 hay A < B
Vậy A < B