Ta có : A = 20002016 + 20002017
= 20002016.(1 + 2000)
= 20002016.2001
< 20012016.2001
= 20012017 = B
=> A < B
Vậy A < B
B=20002017+2017 ,A=20002016+20002017
Mà 20002016>2017
=>A>B
Bài giải
Ta có :
\(A=2000^{2016}\cdot2000^{2017}=2000^{2016}\left(1+2000\right)=2000^{2016}\cdot2001< 2001^{2016}\cdot2001=2001^{2017}=B\)
\(\Rightarrow\text{ }A< B\)