Ta có :
\(B=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Vì :
\(\frac{2017}{2018}>\frac{2017}{2018+2019}\)
\(\frac{2018}{2019}>\frac{2018}{2018+2019}\)
\(\Rightarrow\)\(\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018}{2018+2019}\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Cách 2 :
Ta có công thức :
\(\frac{a}{b}< \frac{a+m}{b+m}\) \(\left(a< b;m>0\right)\)
\(\frac{a}{b}>\frac{a+m}{b+m}\) \(\left(a>b;m>0\right)\)
Áp dụng vào ta có :
\(A=\frac{2017}{2018}+\frac{2018}{2019}< \frac{2017+2019}{2018+2019}+\frac{2018+2018}{2018+2019}=\frac{2017+2018+2018+2019}{2018+2019}>B\)
Vậy \(A>B\)