Ta có :
+) \(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
+) \(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
ta thấy :
\(\frac{1}{2003.2004}>\frac{1}{2004.2005}\Rightarrow1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
\(\Rightarrow\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)