Lời giải:
\(A=\frac{95^{10}(95^{89}+1)-95^{10}+1}{95^{89}+1}\\ =95^{10}-\frac{95^{10}-1}{95^{89}+1}\\ > 95^{10}-\frac{95^{10}-1}{95^{88}+1}=\frac{95^{98}+1}{95^{88}+1}=B\)
Vậy $A>B$
Lời giải:
\(A=\frac{95^{10}(95^{89}+1)-95^{10}+1}{95^{89}+1}\\ =95^{10}-\frac{95^{10}-1}{95^{89}+1}\\ > 95^{10}-\frac{95^{10}-1}{95^{88}+1}=\frac{95^{98}+1}{95^{88}+1}=B\)
Vậy $A>B$
1. Cho A = \(\dfrac{10^{2013}+1}{10^{2014}+1}\) và B = \(\dfrac{10^{2014}+1}{10^{2015}+1}\). Hãy so sánh A và B
2. so sánh ; 2\(^{332}\) và 3\(^{223}\)
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Cho A = \(\dfrac{n^9+1}{n^{10}+1}\) và B = \(\dfrac{n^8+1}{n^9+1}\) trong đó n\(\in\)N; n>1. Hãy so sánh nghịch đảo của A và B rồi so sánh A với B
GIÚP MÌNH VỚI CÁC BẠN ƠI !
BÀI 1:
Cho A =1/5+1/5^2+1/5^3+...+1/5^99+1/5^100
a.Tính A?
So sánh A với 1/4
BÀI 2 :
So sánh :
a. A=9/a^2014+7/a^2014 và B=8/a^2014+8/a^2013 với A thuộc N*
b . So sánh A và B với A=10^2009+1/10^2010+1 và B=10^2010+1/10^2011+1
c . So sánh A=10^2016+1/ 10^2015+1 ; B=10^2015+1/10^2014+1
cho 1/a-1/b và so sánh 1/a*b và 1/a-1/b biết b=a+1
hãy tính 1/a -1/b và so sánh 1/a*b và 1/a -1/b biết b = a + 1
câu 1:cho a,b,n thuộc N* hãy so sánh a+n/b+n và a/b
câu 2:cho A = 1011-1/1012-1 ; B = 1010+1/1011+1 .so sánh A và B
so sánh 4^336 và 3^448 so sánh A và B trong đó A= 1+8+8^2+...+8^150 B= (8^151-1)/7
a,Cho a,b,n thuộc N*.Hãy so sánh a+n/b+n và a/b
b,Cho A = 10^11-1/10^12-1
B = 10^10+1/10^11+1
so sánh A và B
a. Cho a,b,n thuộc N* . Hãy so sánh a+n/b+n và a/b
b.Cho A=1011 -1/1012 -1;B=1010 +1/1011 +1. So sánh A và B.