HM

so sánh 

a, 3^600 và 4^400

b, 4^32 và 16^15

TC
22 tháng 10 2018 lúc 8:18

Ta có:a)\(^{3^{600}}\)=\(^{\left(3^3\right)^{200}}\)=\(^{27^{200}}\)                                                 \(^{4^{400}}\)=\(^{\left(4^2\right)^{200}}\)=\(^{16^{200}}\)

vì 27^200>16^200             =>   3^600>4^400

b)   \(^{4^{32}=4^{2.16}=16^{16}}\)                 vì 16^16>16^15      =>   4^32>16^15

Bình luận (0)
H24
22 tháng 10 2018 lúc 12:19

\(3^{600}=3^{200.3}=\left(3^3\right)^{200}=9^{200}^{_{\left(1\right)}}\)

\(4^{400}=\left(2^2\right)^{400}=2^{800}=2^{200.4}=\left(2^4\right)^{200}=16^{200}_{\left(2\right)}.\)

\(\left(1\right),\left(2\right)\Rightarrow4^{400}>3^{600}\)

\(4^{32}=\left(2^2\right)^{32}=2^{64}_{\left(1\right)}\)

\(16^{15}=\left(2^4\right)^{15}=2^{60}_{\left(2\right)}\)

\(\left(1\right),\left(2\right)\Rightarrow4^{32}>16^{15}\)

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
QL
Xem chi tiết
NP
Xem chi tiết
HM
Xem chi tiết
NU
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết