\(Ta\)\(có\)\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
\(Mà\)\(125^{12}>121^{12}\)
\(=>5^{36}>11^{24}\)
Ta có:
\(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
\(Do125>121\)
\(\Rightarrow125^{12}>121^{12}\)
\(\Rightarrow5^{36}>11^{24}\)
ta có
536 = ( 53) 12=12512
1124=(112)12=12112
do 125>121
=> 12512>12112
=> 536>1124