b, \(99^{20}=99^{10}.99^{10}\)
\(9999^{10}=99^{10}.101^{10}\)
Do \(99^{10}< 101^{10}\Rightarrow9^{20}< 9999^{10}\)
Mk chỉ làm đc câu a thui nha
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vậy \(8^{100}< 9^{100}\)
Nên : \(2^{300}< 3^{200}\)
a) 2^300 = 3^200
b) 99^20 > 9999^10